

COURSE PARTICULARS

Course Title: Introductory Analytical Chemistry

Course code: CHM 213

No. of Units: 3

Status: Compulsory

LECTURER DETAILS

Name:	Mrs. Oni O.S.
Qualifications:	B.Sc, PGD, M.Sc
Phone:	08033890897
Email:	sallyufan@yahoo.com
Area of Specialization:	Analytical/Industrial chemistry

Name: Dr. S. Alayande Qualifications: Phone: Email: Area of Specialization:

COURSE DESCRIPTION

- Introduction to analytical chemistry
- Theory of Errors
- Statistical treatment of data
- Introduction to sampling
- Methods of analysis
- Separation methodsof analysis

COURSE OBJECTIVES

- To explore topics such as experimental design
- To have an understanding of sampling
- To learn how to interpret experimental results.

ASSESMENT

Class Attendance	5marks
Test(s) and Assignments	25marks
Final Examination	70marks
LECTURE PLAN	

Week	Торіс
1st	Introduction to Analytical chemistry and course content
2 nd - 3 rd	Theory of Errors
4 th -5 th	Introduction to sampling
6-7 th	Separation methods
8th	Chemical methods of analysis- volumetric method
9 th	Chemical methods of analysis- physiochemical method
10 th	Chemical methods of analysis - gravimetric method
11 th -12 th	Optical methods of analysis

READING LIST

- Holler, J. F and Grouch S. Fundamentals of Analytical Chemistry 9thedition(2013). Skoog and West.
- 2. Christian G, Analytical Chemistry 6th edition (2004) Wiley International edition.

TUTORIAL QUESTIONS

- A laboratory procedure calls for 250 mL of an approximately 0.10 M solution of NH₃. Describe how you would prepare this solution using a stock solution of concentrated NH3 (14.8 M).
 b.Calculate the molarity of a potassium dichromate solutionprepared by placing 9.67 g of K₂Cr₂O₇ in a 100-mLvolumetric flask, dissolving, and diluting to the calibration mark.
- 2. A sample of an ore was analyzed for Cu2+ as follows. A 1.25-g sample of the ore was dissolved in acid and diluted to volume in a 250-mL volumetric flask. A 20-mL portion of the resulting solution was transferred by pipet to a 50-mL volumetric flask and diluted to volume. An analysis showed that the concentration of Cu2+ in the final solution was 4.62 ppm. What is the weight percent of Cu in the original ore?

b.Explain the difference between systematic and random errors

- 3. Which of the following methods for preparing a 0.0010 M solution from a 1.0 M stock solution provides the smallest overall uncertainty?
 (a) A one-step dilution using a 1-mL pipet and a 1000-mL volumetricflask.
 (b) A two-step dilution using a 20-mL pipet and a 1000-mL volumetric flask for the first dilution and a 25-mL pipet and a 500-mL volumetric flask for the second dilution.
- 4. What is the 95% confidence interval for the amount of aspirin in a single analgesic tablet drawn from a population where m is 250 mg and s2 is 25? What is the 95% confidence interval for the amount of aspirin in a singleanalgesic tablet drawn from a population where m is 250 mg and s2 is 25?
 b. What is the relation between the standard deviation and the precision of a procedure?
- 5. List and explain three sources of Indeterminate error

b.The results of an analysis are 39.97g compared with the accepted value of 37.06g. what is the error in parts per thousand.

- 6. The following replicate weighings are obtained 29.8,30.2,28.6 and 29.7 mg. Calculate the standard deviation of the individual value.b. What is the relation between standard deviation and accuracy?
- **7.** An is an analysis to determine the concentration of Cu in an industrial plating bath uses a procedure for which Zn interferent. When a sample containing 128.6 ppm Cu is carried through a separation to remove Zn, the concentration of Cu remaining is 127.2 ppm. When a solution of Zn is carried through the separation, a concentration of 4.3 ppm remains. Calculate the
 - a. recoveries for Cu and Zn
 - b. the separation factor
- **8.** The concentration ratio of Cu to Zn in the plating bath is 7:1. Analysis of the standard solutions containing only Cu or Zn give the following standard equations.

S_{Cu}=1250 × ppm Cu

S_{Zn}= 2310 x ppm Zn

- a. What error is expected if no attempt is made to remove Zn before analyzing for Cu?
- b. What is the error if the separation is carried out?
- 9. A 3.96 × 10⁻⁴ solution of compound A exhibited an absorbance of 0.624 at 238 nm in a 1.000-cm cuvet; a blank solution containing only solvent had an absorbance of 0.029 at the same wavelength. Find the molar absorptivity of compound.

b.What is the difference between luminescence and chemiluminescence

- **10.** State the principles underlying the following spectroscopic methods.
 - Refractometry
 - Polarimetry
 - NMR

b.What are the exceptions to BEER-LAMBERTS law