

COURSE PARTICULARS

Course Title:	Analytical Chemistry
Course code:	CHM 411
No. of Units:	2
Status:	Compulsory

LECTURER DETAILS

Name:	Mrs. Oni O.S.
Qualifications:	B.Sc, PGD, M.Sc
Phone:	08033890897
Email:	sallyufan@yahoo.com
Area of Specialization:	Analytical/Industrial chemistry

Name: Dr. S. Alayande Qualifications: Phone: Email: Area of Specialization:

COURSE DESCRIPTION

- Theory of Errors
- Sampling and Sample Pre-treatment
- pH Methods of analysis
- Conducto-metric methods
- GC-MS Method of analysis
- Radio-chemical Method of analysis
- Chromatography

COURSE OBJECTIVES

- To explore topics such as experimental design
- To have an understanding of sampling
- To learn how to interprete experimental results.

ASSESMENT

Class Attendance	5marks
Test(s) and Assignments	25marks
Final Examination	70marks

LECTURE PLAN

Week	Торіс
1st	Introduction to Analytical chemistry and course content
2 nd	Theory of Errors
3^{rd} - 4^{th}	Introduction to sampling and sample pre-treatment
5 th	pH Methods of analysis
6^{th} - 7^{th}	Chemical methods of analysis- Conducto-metric method
8 th -9 th	Chemical methods of analysis - GC-MS method
10 th	Chemical methods of analysis - Radio-chemical Method of analysis
11 th -12 th	Chromatography

READING LIST

- 1. Holler, J. F and Grouch S. Fundamentals of Analytical Chemistry 9thedition(2013).
 - a. Skoog and West.
- 2. Christian G, Analytical Chemistry 6th edition (2004) Wiley International edition.

TUTORIAL QUESTIONS

1. The accuracy of a spectrophotometer can be evaluated by preparing a solution of 60.06-ppm $K_2Cr_2O_7$ in 0.0050 M H_2SO_4 and measuring its absorbance at a wavelength of 350 nm using a cell with a pathlength of 1.00 cm. The absorbance should be 0.640. What is the molar absorptivity of $K_2Cr_2O_7$ at this wavelength?

b. What are the limits to Beer and Lamberts Law.

- An is an analysis to determine the concentration of Cu in an industrial plating bath uses a procedure for which Zn interferent. When a sample containing 128.6 ppm Cu is carried through a separation to remove Zn, the concentration of Cu remaining is 127.2 ppm. When a solution of Zn is carried through the separation, a concentration of 4.3 ppm remains. Calculate the a.recoveries for Cu and Zn b. the separation factor
- The concentration ratio of Cu to Zn in the plating bath is 7:1. Analysis of the standard solutions containing only Cu or Zn give the following standard equations. S_{Cu}=1250 × ppm Cu

S_{Zn}= 2310 x ppm Zn

a.What error is expected if no attempt is made to remove Zn before analyzing for Cu? b.What is the error if the separation is carried out?

- 4. What is the difference between fluorescence and phosphorescence?
 - b. By how many kilojoules per mole is the energy of increased when it absorbs ultraviolet radiation with a wavelength of 147 nm?
 - c. How much is the energy of increased when it absorbs infrared radiation with a wavenumber of 2300 cm⁻¹?
- 5. Pure hexane has negligible ultraviolet absorbance above a wavelength of 200 nm. A solution prepared by dissolving 25.8 mg of benzene in hexane and

diluting to 250.0 mL had an absorption peak at 256 nm and an absorbance of 0.266 in a 1.000-cm cell. Find the molar absorptivity of benzene at this wavelength.

- b. Explain the difference between transmittance, absorbance, and molar absorptivity Which one is proportional to concentration?
- 6. Draw and explain a flow scheme of the fluorescence Spectrometer.
 - b. A sample of hexane contaminated with benzene had an absorbance of 0.070 at 256 nmin a cuvet with a 5.000-cm pathlength. Find the concentration of benzene in mg/L.
- 7. What is the main advantage of fluorescence over other absorption measurements b. State the principles underlying the following spectroscopic methods.
 - Refractometry
 - Polarimetry
 - NMR

•

- 8. A 3.96 × 10⁻⁴ solution of compound A exhibited an absorbance of 0.624 at 238 nm in a 1.000-cm cuvet; a blank solution containing only solvent had an absorbance of 0.029 at the same wavelength. Find the molar absorptivity of compound.
 b. What is the difference between luminescence and chemiluminescence?
- 9. What is the difference between a fluorescence excitationspectrum and a fluorescence emission spectrum? Which one resembles an absorption spectrum?
- b. A 5.00 × 10⁻⁴ M solution of an analyte is placed in a sample cell that has a pathlength of 1.00 cm. When measured at a wavelength of 490 nm, the absorbance of the solution is found to be 0.338. What is the analyte's molar absorptivity at this wavelength.
- 10. The transmittance of a solution is found to be 85.0% when measured in a cell whose pathlength is 1.00 cm. What is the percent transmittance if the pathlength is increased to 10 cm.
 - b. What is an absorption spectrum?
 - c. The IR spectrum is split into regions. What are these regions and what part do they play in the reading of the spectrum.