

LEAD CITY UNIVERSITY, IBADAN FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING SEMESTER/SESSION: 1ST SEMESTER, 2024/2025

Course Particulars

Course Code: EEE 403 Coarse Title: Control Theory II Course Units: 3 Course Status: Core

Lecturer's Details

Name: ZUBAIR, Abdul Rasak Qualifications: B.Sc. (Electrical Engineering), M.Sc. (Electrical Engineering), Ph.D (Electrical and Electronic Engineering), MNSE, MIEEE, Registered Engr. (COREN) Phone: 08023278605 E-mail: <u>ar.zubair@yahoo.co.uk</u>

Areas of Specialization

Digital Signal Processing, Digital Image Processing, Engineering in Medicine and Renewable Energy

Course Synopsis

State-space description of linear systems. Concepts of controllability and observability. Feedback concept, advantages, system classification, structures, control systems components - mechanical, electronic, hydraulic, thermal, position control, transient analysis of servo-mechanism, signal regulators compensation techniques. Series/parallel feedback controllers. System transfer functions, signal flow graphs, stability, Routh-Hurwitz criteria. Modern control observers. Realization of systems having specified transfer function. Optimization methods. Linear discrete dynamic systems. System identification methods. Non-linear control application.

The course objectives are to:

- Facilitate the understanding of the mathematical concepts of state space modeling of systems
- Facilitate the understanding of control system's classification, structures and components
- Discuss the operational principles of feedback control
- Explain the principle of control system design and analysis
- Study the performance of control systems

Course Learning Outcomes (CLOs)

At the end of this course, students would be able to:

- 1. Understand and explain the principles of mathematical modeling of physical systems
- 2. Identify the structures and components of feedback control systems
- 3. Design and modeling linear time invariant (LTI) control systems
- 4. Understand and explain the concepts of non-linear control
- 5. Understand the application of methods of control system analysis
- 6. Design and analyze LTI control systems in MATLAB

Lecture Delivery Method

- Lecture with interactive sessions
- Tutorial exercises

LECTURE PLAN

Course Modules

- Module 1: Mathematical modeling of linear time invariant (LTI) control system
- Module 2: State space modeling of feedback control system
- Module 3: Design of Control systems
- Module 4: Analysis of Control systems

Course Outline

Week	Lecture Topic	Contents	Learning Objectives
1	Introduction and	Course outlines, delivery	Discuss the general overview of
	Course Overview	methods, assessments, course	the course, as well as rules and
		materials and recommended	regulations requisite for
		text books	successful achievement of the course objectives.
2	Overview of	Review of Transfer Function.	To review the fundamental
	Mathematical	Frequency and Time domain	concepts of control system
	Modeling of	descriptions of control system	modeling.
	Control Systems		
3	State space	Methods of obtaining state	Understand the concepts of
	representation of	space models of dynamic	state space models of dynamic
	control system	systems. Conversion from state	systems
		space to transfer function. State	
		transition matrix	
4	Solutions of state	Solution to homogeneous	Explain the solution procedures
	space equations	(free) system equation	for state space equations.
		Solution to non-homogeneous	
		(forced) system equation.	
Module 2: State space modeling of feedback control system			
Number of Lecture Hours: 9			

Module 1: Mathematical modeling of linear time invariant (LTI) control system Number of Lecture Hours: 12

Lecture Topic

Week

5	Modeling of	Modeling of RC, LC and RLC	Understand the
	Electrical system	electrical circuits.	principles of state
			space modeling of
			electrical systems
6	Modeling of	Modeling of mechanical spring-	Understand the
	mechanical system I	mass-damper systems	principles of state
			space modeling of
			mechanical systems
7	Modeling of	Modeling of fluids and thermal	Understand the
	mechanical system II	systems etc.	principles of state
			space modeling of fluid
			and thermal systems

Module 3: Design of Control systems Number of Lecture Hours: 9

Week	Lecture Topic	Contents	Learning Objectives
8	Controllers in control	Proportional, integral, derivative	Understand the design
	system design	(PID) Controllers.	concepts and
			principles of
			Proportional, integral,
			derivative (PID)
			Controllers.
9	Methods of	Pole placement method. Ziegler	Apply the design
	Controller parameter	Nichols method. MATLAB	concepts and
	tuning	exercises.	principles of
			Proportional, integral,
			derivative (PID)
			Controllers.
10	Overview of	Frequency response design	Understand the
	Frequency response	approach: Bode plots, Root locus	principles of
	plots	plot, Nyquist plot, Nichols plots.	frequency response
		MATLAB exercises.	design approach.

Module 4: Analysis of Control systems Number of Lecture Hours: 15

Week	Lecture Topic	Contents	Learning Objectives
11	Analysis of control system I	Controllability of control system	Understand and apply the concepts of controllability for the analysis of control system
12	Analysis of control system II	Observability of control system	Understand and apply the concepts of observability for the analysis of control system

13	Stability of control system	Poles and Zeros. Eigen values, stability of linear systems. Routh Hurwitz stability criterion.	Explain the concepts of poles and zeros; eigen- values and Routh criterion for control system stability analysis
14	Methods of frequency response analysis.	Stability analysis: Bode plots, Root locus plot, Nyquist plot, Nichols plots	Apply frequency response methods for control system stability analysis
15	Revision	Tutorial exercises	

Grading System

This course will be graded as follows:

Attendance:	10%
CA/Assignments:	30%
Examination:	60%
Total:	100%

References

- 1. Katsuhiko Ogata: Modern Control Engineering (5th Edition). Prentice Hall, 2010.
- 2. Norman S. Nise: Control Systems Engineering (6th Edition). John Wiley and Sons, 2011.

EEE 403 Tutorial Questions

Question 1

Given a feedback control system with R as reference input, U as control input, Y as measured output and D as external disturbance as shown in Fig Q1.

Fig Q1.

i) Show that the measure output, Y(s) is given by: $Y(s) = \frac{PK}{1 + PK}R(s) + \frac{1}{1 + PK}D(s)$ ii) Explain the effects of the parameter K on the reference input R(s) and disturbance D(s)

Question 2

The state space equation of a mechanical system is given below. Find the transfer function for the system.

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -k/m & -b/m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1/m \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Question 3

Derive the transfer function of a single input single output (SISO) system from the state space equations given as:

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

Question 4

Obtain the state space representation of the RCL circuit shown.

Question 5 A system is characterized by the transfer function given by:

$$\frac{Y(s)}{U(s)} = \frac{2}{s^3 + 6s^2 + 11s + 6}$$

Test the controllability and observability of the system?

Question 6

Obtain the state space representation of the RC circuit shown in Fig Q6.

Question 7 Obtain a state space model of the system shown in Fig Q7.

Question 8

Consider the spring-mass-dashpot system mounted on a massless cart as shown in Fig. Obtain a state space model of the system.

Fig Q8

Question 9

Using the final value theorem, find the steady state error of the system depicted by the block diagram in Fig Q9 for the inputs (i) r(t) = 4u(t) (ii) $r(t) = t^2u(t)$ (iii) r(t) = 12tu(t)

Fig Q9

Question 10 Using block diagram reduction method, find the transfer function of the system in Fig Q10?

Fig Q10

Question 11

Determine the range of values for control parameter k required for the stability of the system with given characteristic equation:

 $s^3 + 8s^2 + 2s + 4k = 0$

Question 12

Consider the system shown in Fig. Q12, model the input-output characteristics of the system where q and q2 are the input and output flowrates respectively. Assume variation at steady state is negligible.

Fig. Q12

Question 13

- a) Define Mason's Gain Formula?
- b) Obtain the transfer function (C/R) of the system whose signal flow graph is shown in Fig.Q13b.

Fig.Q13b.

Question 14

Obtain the transfer function of C(s)/R(s) of the system whose signal flow graph is shown in Fig. Q14.

Question 15 Find the transfer function of the system represented by the signal flow graph below?