

LEAD CITY UNIVERSITY, IBADAN FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING SEMESTER/SESSION: SECOND SEMESTER, 2024/2025

Course Particulars

Course Code: EEE 514 Coarse Title: Use of Engineering Software Packages Course Units: 2 Course Status: Core

Lecturer's Details

Name: AKINDE, Olusola Kunle Qualifications: BTech (Computer Engineering), MSc (Microprocessor and Control Engineering), PhD. Registered Engr. (COREN) Phone: 08107232879 E-mail: ajolawale15@gmail.com

Areas of Specialization

Systems analysis and design, modeling, simulation, optimization and control. Sensors and transducers for instrumentation. Expert System.

Course Synopsis

Introduction to modeling and simulation software packages. Programming and simulation with software packages such as KiCAD, MATLAB, COMSOL Multiphysics, Python, AUTOCAD for engineering applications.

COURSE OBJECTIVES

The course objectives are to:

- facilitate the understanding of the concepts of modeling and Simulation
- facilitate the understanding of the concepts of computer Programming
- discuss the process of modeling and simulation using engineering software package(s)
- study in details the programming procedure to solve engineering problems
- develop students' ability to use software packages such as MATLAB for hands-on modeling and simulation of electrical and electronic circuits

Course Learning Outcomes (CLOs)

At the end of this course, students would be able to:

- 1. Understand and explain the fundamental of engineering software packages and programming
- 2. Identify tools used in Engineering Packages

- 3. Understand different programming control structure
- 4. Understand and explain the structure of engineering software packages
- 5. Model and simulate electrical circuit system using engineering software packages
- 6. Program micro-controller based/electrical circuit system using engineering software packages
- 7. Develop engineering simulation software application.

Lecture Delivery Method

- Lecture with interactive sessions
- Weekly Laboratory Session

LECTURE PLAN

Course Modules

Module 1: Course overview, concepts, principles, fundamental of modeling

Module 2: Concept of Simulation

Module 3: Programming and Simulation of model systems using software packages

Module 4: Modeling and Simulation of physical and microcontroller based Engineering Systems using MATLAB

Course Outline

Module 1: Course overview, concepts, principles, fundamental of modeling Number of Lecture Hours: 8

Week	Lecture Topic	Contents	Learning Objectives
1	Introduction and Course Overview	Course outlines, delivery methods, assessments, course materials and recommended text books	Discuss the general overview of the course, rules and regulations for successful achievement in the course will be emphasized.
2	Fundamentals of Modeling	Overview of system; System attributes; Classification of systems; System analysis and synthesis;	To facilitate the understanding of the fundamental principles of system, different system classifications and how it relate to modeling.
3	Systems Modeling	Define modeling; Need of System Modeling; Explain Modeling Methods; Classification of Models; Characteristics of Models	To facilitate the understanding of system modeling and its characteristics.
4	Modeling of Physical Systems	Define mathematical model; State and State variables; Modeling of Mechanical Systems; Modeling of Electrical Systems;	Understand modeling in various fields.

Module 2: Concept of Simulation Number of Lecture Hours: 6

Week	Lecture Topic	Contents	Learning Objectives
5-6	Simulation and	Define simulation; Types of	Understand the
	Errors during	simulations; Advantages of Simulation;	concepts of
	Simulation with	Application of Simulation;	simulation and
	Numerical	Comparison of Different Numerical	comparison among
	Methods	Methods;	different numerical
		Errors in Numerical Methods:	methods and error
		Truncation Error; Round Off Error;	generated
		Step Size Error; Discretization Error	
7	Simulation	Introduction to KiCAD, MATLAB,	Understand various
	Software	Protues and Python.	Simulation Software
	Packages		Packages
8	Mid-semester	Continuous assessment	Assess students'
	Test		knowledge
			development

Module 3: Programming and Simulation of model systems using software packages Number of Lecture Hours: 8

Week	Lecture Topic	Contents	Learning Objectives
9 9	Electronic Modeling and Simulation	Introduction to different modeling and simulation Software; Introduction to MATLAB; MATLAB Environment; Data Types in MATLAB; Matrix Computations in MATLAB; Data Type Conversion	Explain fundamental of using engineering software Modeling and Simulation.
10	Programming and Simulation	Program Flow Structures: Loop; Conditional; Trial. MATLAB Functions: Structures of MATLAB Functions; Variable Numbers of Arguments; Debugging	Understand how to develop an error free MATLAB program.
11	MATLAB Applications in Scientific Computations	Linear Algebra Problems: Generating Special Matrices; Matrix Analysis and Computation; Inverse and Pseudo Inverse of Matrices; Transform and Decomposition; Eigenvalues and Eigenvectors; Solution of Matrix Equations; Nonlinear Function Evaluations; Differentiation in MATLAB Numerical Integration in MATALB.	Learning basic MATLAB syntax and applying knowledge of programming in solving some simulation computational basics.

12	Modeling	and	Description of the Simulink	To facilitate the
	Simulation	with	Block Library: Signal Sources;	understanding of Simulink
	Simulink		Continuous Blocks; Discrete-	and its application in real
			time Blocks; Lookup Table	life to model simulation.
			Blocks; User-defined Functions;	
			Math Blocks; Logic and Bit	
			Operation Blocks;	
			Simulink Modeling; Model	
			Manipulation and Simulation	
			Analysis; Practical Examples of	
			Simulink Modeling.	

Module 4: Modeling and Simulation of physical and microcontroller based Engineering Systems using MATLAB

Week	Lecture Topic	Contents	Learning Objectives
13	Physical System	Introduction to Simscape;	To facilitate the
	Modeling and	Overview of Simscape	learning of model and
	simulation with	Foundation Library; Description	simulation of physical
	Simscape	of SimPowerSystems; Modeling	engineering system.
		and Simulation of Electronic	
		Systems.	
14	Introduction to	Programming of microcontroller-	Design, construct and
	microcontroller-	based systems with Arduino	simulate
	based circuit	starter kit.	microcontroller-based
	modeling and		system design using
	simulation		MATALB.

Number of Lecture Hours: 6

Grading/Assessment

Attendance	-	10 marks
Continuous Assessment	-	20 marks
Mid-semester Test	-	10 marks
Examination	-	60 marks

References

Chaturvedi, D. K. (2010). Modeling and Simulation of System Using MATLAB and Simulink (1st

ed.) [Electronic]. Taylor and Francis Group, LLC. https://www.taylorandfrancis.com

Xue, D., & Chen, Y. (2014). System Simulation Techniques with MATLAB® and Simulink® (1st

ed.) [Electronic]. John Wiley & Sons, Ltd. https://www.wiley.com

EEE 514 Tutorial Questions

Question 1

15marks

- i) Define system.
- Discuss the following system attributes: a) System boundary b)System components ii) and their interactions c) Environment
- According to the Time Frame discuss system classification iii)
- Define the following concept as relate to system: a) Analysis b) Synthesis iv)

Question 2

- i) Define modeling.
- ii) Discuss reasons why real systems are not been used to performed experiments.?
- iii) Discuss and compare with appropriate diagram the three methods applicable to Complex Systems?

Question 3

- i) Discuss all classification of Models you know,?
- ii) Define state and state variables

Question 4

Consider a tank of volume V which is full of a solution of a material A at concentration C. A solution of the same material at concentration C_0 is flowing into the tank at low rate F_0 and a solution is flowing out the top of the tank at low rate F_1 . Determine the dynamic response to a step change in the inlet concentration C_0 .

Hint1: Well mixed solution, density of solution is constant and level is constant in the tank. Hint2: $F_0 = 0.085 \ m^3/\text{min}$, V = 2.1 m^3 ; $C_{init} = 0.925 \ \text{kg}/m^3 \ \text{t} < = 0$; $C_0 = 1.85 \ \text{kg}/m^3 \ \text{t} > 0$

Ouestion 5

Develop a computer program in MATLAB to simulate the hydraulic system in question 4.

Question 6

- a) The figure below shows a simple mechanical translational system with a mass, a spring, and a dashpot. A force F is applied to the system. Derive a mathematical model for the system.
- b) Develop a simulation program in MATLAB for the given system above.

Question 7 Figure beld

iductor, and a resistor.

The inductor and the capacitor are connected in parallel. A voltage V_a is applied to the circuit. Derive a mathematical model for the system.

15marks

15marks

15marks

15marks

15marks

Question 8		15marks
i) Define Simulation?		
ii) Discuss six (6) Advantages of Sin	mulation?	
iii) State five (5) areas of application	of Simulation?	
Question 9		15marks
a) State the characteristics of Nume	rical Methods in Simulation?	
b) In tabular form compare differen	t Numerical Methods?	
c) Explain Truncation error and Rou	und off error	
Question 10		15marks
a) Explain the following concepts in	n MATLAB (i) Constants (ii) Variables.	
b) Explain the following constants i	n MATLAB (i) eps (ii) Inf (iii) NaN.	
c) .Explain the two kinds of Loop S	tructures in MATLAB with their syntax.	
Question 11		15marks
a) Write the general syntax of If and	d Switch case statement in MATLAB?	
b) Explain Trial Structure in MATL	AB?	
c) Explain structures of MATLAB	Functions	
Question 12		15marks
d) Explain the main blocks in the Si	gnal Sources group in Simulink?	
e) Explain the blocks in the Continu	ous group in Simulink?	
Question 13		15marks
a) Discuss how to Output and Printi	ing of Simulink Models?	
b) A function (x) is given as: x^4 +	$-3x^3 + 4x^2 + 2x + 6$. Plot (x) for a per-	riod {-1,1} and
find roots of $f(x)$ using MATLAI	3 code.	
Question 14		15marks
a) List Commonly used block group	o in Simulink?	
b) Discuss Simscape modeling prog	ram in Simulink?	
Question 15		15marks
Discuss in details Overview of S	imscape Foundation Library?	
Question 16		15marks
Perform Simple Traffic Simulati	on using Matlab.	